
1 Het begint met een idee

Statistical tests and effect 
size
Ivano Malavolta
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Roadmap

● Warm up

● Check for normality

● Main statistical tests

● p-value corrections

● Effect size
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Context and assumptions 

● We focus on quantitative variables only
○ nominal
○ ordinal
○ interval
○ ratio

● Factors are nominal or ordinal
● Dependent variables are ratios

Our statistical tests detect differences between the means of 
the dependent variable
● Treatments are fixed a priori
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Tasks for data analysis

1. Descriptive statistics
○ for understanding the “shape” of collected data

2. Select statistical test
○ according to collected metrics and data distribution
○ this might involve also data transformation

3. Hypothesis testing
○ for providing evidence about your findings

i. statistical significance

4. Effect size calculation
○ for understanding if your (statistically significant) results are actually 

relevant in practice
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What is a statistical test?

● Calculation of a sample statistic assuming that the null 
hypothesis is true

● The calculated value of the statistic has a certain 
probability given that the null hypothesis is true (p-
value)
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First choice: parametric VS non-parametric 
tests

● Parametric tests assume a specific distribution of the 
data
○ typically, normal distribution
○ more powerful 

 → lower chances of having Type II errors
● Non-parametric tests do not make any assumption 

about data distribution
○ more general
○ less powerful 

 → larger samples are needed
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If you can apply it, always prefer a parametric test
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How to choose?

Non-parametric 
methods Parametric methods

Model 
restrictions 

(eg, 
normality) 
satisfied?

Nominal or 
ordinal scale?

YES

NO

YES

NO

In your report explain in details why you choose a 
specific test!



Vrije Universiteit Amsterdam
8

Check for normality
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Graphical check (Q-Q plot)
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Normality tests

● Normality tests

○ H0: sample is drawn from a normal distribution

● Shapiro-Wilk test (AKA Shapiro-Wilk’s W)

● If p-value <α for a given sample, we can conclude data 
is NOT normally distributed
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Shapiro-Wilk test
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Shapiro-Wilk test
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Shapiro-Wilk test

● Warning: Shapiro-Wilk is not robust for small samples!
○ Additional verification (e.g. via Q-Q plot) is always needed
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Inspiration for checking assumptions

Check the papers EASE_2020 and MobileSoft_2020 on 
Canvas

A nice online resource is also available here: 
https://www.datanovia.com/en/lessons/t-test-in-r/#assump
tions-and-preliminary-tests-1 

https://www.datanovia.com/en/lessons/t-test-in-r/#assumptions-and-preliminary-tests-1
https://www.datanovia.com/en/lessons/t-test-in-r/#assumptions-and-preliminary-tests-1
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Main statistical tests
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Statistical tests VS experiment design
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One factor - 2 treatments - random design
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t-Test

Goal: compare independent samples
○ Values of the dependent variable obtained with different treatments

○ For each treatment you are measuring different subjects

Parametric

Hypotheses:

● Two-tailed
○ H0: μ2 = μ1 Ha: μ2 =O μ1

● One-tailed (alternative: greater)
○ H0: μ2 = μ1 Ha: μ2 > μ1

● One-tailed (alternative: less) 
○ H0: μ2 = μ1 Ha: μ2 < μ1 

● More powerful
● Cannot say anything in the 

opposite direction
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t-Test in R
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t-Test: example
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t-Test: example 2
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Mann-Whitney test

Goal: compare independent samples
● It can be used instead of the t-test when data is not normal

Non-
parametric

Hypotheses:

● Two-tailed
○ H0: μ2 = μ1 Ha: μ2 =O μ1

● One-tailed (alternative: greater)
○ H0: μ2 = μ1 Ha: μ2 > μ1

● One-tailed (alternative: less) 
○ H0: μ2 = μ1 Ha: μ2 < μ1 

Same hypotheses as the t-test
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Mann-Whitney test in R
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Mann-Whitney test: example
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One factor - 2 treatments - paired design
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Paired t-Test

Goal: compare independent samples from repeated 
measures

○ Each subject receives different treatments
○ We focus on the differences exhibited by each subject with different 

treatments
○ Samples must be equal in size

Parametric

Hypotheses:

● Two-tailed
○ H0: μd = 0 Ha: μd =O 0

● One-tailed (alternative: greater)
○ H0: μd = 0 Ha: μd > 0

● One-tailed (alternative: less) 
○ H0: μd = 0 Ha: μd < 0 
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Paired t-Test: example 
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Hypotheses:

● Two-tailed
○ H0: μd = 0 Ha: μd =O 0

● One-tailed (alternative: greater)
○ H0: μd = 0 Ha: μd > 0

● One-tailed (alternative: less) 
○ H0: μd = 0 Ha: μd < 0 
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Wilcoxon signed-rank test

Goal: compare independent samples from repeated 
measures

● It can be used instead of the paired t-test in case of not normal data

Non-
parametric

Same hypotheses as the 
paired t-test
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Wilcoxon signed-rank test: example
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>=1 factors - >2 treatments
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ANOVA (ANalysis Of VAriance)

Goal: understand how much of the total variance is due to 
differences within factors, and how much is due to differences 
across factors

○ Many types of ANOVA tests

○ Works for many experiment designs

Parametric

Hypotheses:

H0: μ1 = μ2 = μ3 Ha: μ1 =O μ2 V μ1 =O μ3 V μ2 =O 
μ3
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F-statistic

F = Variation among sample means / variation within the 
samples

when H0  → F follows a known F-distribution

● the mean of the F-distribution tends to be 1
https://goo.gl/jHWo8A
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Significance

F tends to be larger if H0 is false

 → the more F deviates from 1, the stronger the evidence 
for unequal population variances

● Methods to determine significance level:

○ textbook: compare F against a table of critical values 
(according to DF and α). If F > Fcritical, reject H0

○ computer-based: compute the p-value of finding F 
greater than the observed value. If p < α, reject H0

Ivano Malavolta / S2 group / Statistical tests and effect size
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Types of ANOVA
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● One-way ANOVA

○ one factor, >2 treatments 

○ if 2 treatments: equivalent to t-test (almost never 
used)
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Types of ANOVA
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● Factorial ANOVA

○ 2 (two-way) or more factors

○ any number of treatments

○ also computes interactions



Vrije Universiteit Amsterdam
36

How to know which treatments really differ?

Tukey’s test



Vrije Universiteit Amsterdam
37

ANOVA assumptions
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● The dependent variable should be continuous
● Samples must be independent 
● Normal distribution of the dependent variable 

between the groups (approximately)
● Residuals (aka errors in the sample) should be 

normally distributed
○ qqPlot(residuals(myData.aov))

● Homoscedasticity
○ variance between groups should be the same 

■ leveneTest(x ~ y, data=myData)

Assumptions violated 
 → non-parametric 

alternative
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ANOVA: non-parametric alternative
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● Kruskal-Wallis: one-way non-parametric ANOVA

○ one factor, multiple treatments

○ no estimate of the treatment effect (due to ranking)

Non-
parametric
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Main statistical tests
You are measuring different 
subjects

You are measuring the same 
subject against different 
treatments

Use this in case the 
values of your dep. var 
are not normally 
distributed
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Data transformation
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These slides are available on Canvas! 
File: Vegas TB ICSE17.pdf

For any set of N identically 
distributed variables, the 
mean of the variable values 
will be approximately 
normal, with mean, μ, and 
variance, σ2/N 
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Other tips

• You can use the bestNormalize package to discover the best 
transformation to apply

• Remember to apply the same transformation to ALL the 
measures of a dependent variable 

multiple variables, in case you analyze interactions
• When you will visualize tables and plots you will need to show the 

non-transformed data 
• If you do not manage to satisfy the assumptions of your 

statistical test (after transforming), then indeed you can go with a 
non-parametric one (this is always the safest way, even though it 
might not be very powerful)

https://cran.r-project.org/web/packages/bestNormalize/vignettes/bestNormalize.html
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Correction of p-values
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Example
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Dependent variable = energy consumption  of the app
Independent variables =

● A: Image encoding algorithm: {png, jpeg}
● B: Mobile device type: {high-end, low-end}
● C: Network conditions: {wifi, 3G}

You perform 3 tests:
● t.test(A, B)
● t.test(A, C)
● t.test(B, C)

P(at least one significant result) = 1 − P(no significant results)
= 1 − (1 − 0.05)3

 ≈ 0.15
 → 15% chance of seeing relevant results, when there may be none
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The problem
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Multiple tests  → higher probability of getting 
(statistically     

significant ) results
 → you have to adjust your α (it was 0.05)

Three main correction techniques:

● Bonferroni

● Holm

● Benjamini- Hochberg 
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Bonferroni correction

Supposing we are doing N tests,

we can reject H0 if the p-values of those tests are below α/N 

We can reject the H0 if a test provides a p-value < 0.05/3=0.016

 → 0.016 is our new significance threshold!
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Less stringent that Bonferroni’s

Procedure:

● rank your p-values from the smallest to the largest

● multiply the first by N, the second   by N-1, etc.

● a p-value is significant if, after multiplied, it is <0.05

P-values of the tests: {0.01, 0.02, 0.03}

Bonferroni:
● 0.01 * 3 = 0.03 
● 0.02 * 3 = 0.06 
● 0.03 * 3 = 0.09

54

Holm’s correction
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Holm:
● 0.01 * 3 = 0.03 
● 0.02 * 2 = 0.04 
● 0.03 * 1 = 0.03
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The least stringent correction (highly suggested)

Procedure:

● rank your p-values from the smallest to the largest

● assign ranks to each p-value according to its position

- first=1, second=2, third=3, …

• compute the BH critical value for each p-value as (i/N)Q
i   = the ith p-value
N = the total number of  p-values
Q = the acceptable false discovery rate as percentage (e.g., 50%)

● identify P as the highest p-value that is smaller than the BH critical 
value

● P and all p-values ranked before P  are considered as significant55

Benjamini- Hochberg ’s correction

Ivano Malavolta / S2 group / Statistical tests and effect size
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Benjamini- Hochberg ’s correction
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P-values of the tests: {0.01, 0.02, 0.03, 0.04, 0.2, 0.4, 0.8, 0.9}

Original p-
value

Rank BH

0.01 1 (1/8)*0.5= 0.0625

0.02 2 (2/8)*0.5= 0.125

0.03 3 (3/8)*0.5= 0.1875

0.04 4 (4/8)*0.5= 0.25

0.2 5 (5/8)*0.5= 0.3125

0.4 6 (6/8)*0.5= 0.375

0.8 7 (7/8)*0.5= 0.4375

0.9 8 (8/8)*0.5= 0.5
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Effect size
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Effect Size

● p < 0.05  

● Actual difference: 
0.0001% 

Effect Size: quantitative measure 
of the strength of a 
phenomenon
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Effect size measures
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● Cohen’s d
○ parametric statistics

● Cliff’s delta
○ non-parametric statistics
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Cohen’s d
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The magnitude of a main factor treatment effect on the 
dependent variable

Where:

●  x1 , x2 = the means of the two groups

●  s = standard deviation
○ Pooled standard deviation for independent samples

Values:
0 = full overlap
1 = 1-sigma distance 
between the means
…
3 = 3-sigma distance  →
~no overlap 
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Cohen’s d in R
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Cliff’s delta
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Represents the degree of overlap between the two distributions 
of scores

Where:

● xi = the values of the first group

● xj = the values of the second group

● m, n = the cardinalities of the two groups

Values:
0 = full overlap
+1 = all the values of one 
group > all the values of 
the other  one
...
-1  = the inverse 



Vrije Universiteit Amsterdam
63

Cliff’s delta in R
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What this lecture means to you?
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Readings

[1] Dybå, Tore, Vigdis By Kampenes, and Dag IK Sjøberg. "A systematic review of statistical 
power in software engineering experiments." Information and Software Technology 48.8 

(2006): 745-755.

Part 3Chapter 6

Slides of Sira Vegas’s technical briefings at ICSE 2017 (on Canvas)
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Some contents of lecture extracted from:
 
● Giuseppe Procaccianti’s lectures at VU
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